The lab consists of:
Note: Attendance is mandatory for all meetings and labs.
All following lab courses take place in Room 3R3.06 (P1, LIKE):
Lab 1: Pitch Estimation and Harmonic to Noise Ratio Estimation
28.10.2014: 12:00 - 16:00,
30.10.2014: 12:00 - 16:00
Lab 2: Short-Time Fourier Transform and Chroma Features
4.11.2014: 12:00 - 16:00,
6.11.2014: 12:00 - 16:00
Lab 3: Speech Analysis
11.11.2014: 12:00 - 16:00,
13.11.2014: 12:00 - 16:00
Lab 4: Speech Enhancement Using Microphone Arrays
18.11.2014: 12:00 - 16:00,
20.11.2014: 12:00 - 16:00
Lab 5: Statistical Methods for Audio Experiments
25.11.2014: 12:00 - 16:00,
27.11.2014: 12:00 - 16:00
If you want take this lab course, please register before 14th of October via StudOn. For questions, please contact Fabian-Robert Stöter.
The objective of this lab course is to give students a hands on experience in audio processing. The lab is organised as follows:
The lab courses will be held weekly for each group and will be supervised by a member of the AudioLabs team.
The material is available on StudOn 2 weeks in advance of each lab course. The exercises will for each lab will be available as print outs during the actual lab.
Supervisors: Stefan Bayer, Nils Werner
When looking at audio signals, one possible signal model is to distinct between harmonic components and noise like components. The harmonic components exhibit a periodic structure in time and it is of course of interest to express this periodicity via the fundamental frequency F0, i.e. the frequency of the first sinusoidal component of the harmonic source. This fundamental frequency is commonly also called the pitch of the source, especially when the source is human speech. It is also of interest how the relationships in terms of energy between the harmonic and noise like components of an audio signal are. One feature expressing this relationship is the Harmonic to Noise Ratio (HNR). The estimation of the pitch and the HNR then can be used e.g. for efficiently coding the signal, or as will be shown in chapter 5, to generate a synthetic signal based on this and other information gained from analysing the signal. In this laboratory we will concentrate on a single audio source, and we will restrict ourselves to speech, which is the primary mode of human interaction. We will use this signals to develop simple estimators for both features and compare the results to state-of-the-art solutions for estimating the pitch and the HNR.
Supervisors: Stefan Balke, Christian Dittmar, Nanzhu Jiang
The Fourier transform, which is used to convert a time-dependent signal to a frequency-dependent signal, is one of the most important mathematical tools in audio signal processing. Applying the Fourier transform to local sections of an audio signal, one obtains the short-time Fourier transform (STFT). In this lab course, we study a discrete version of the STFT. To work with the discrete STFT in practice, one needs to correctly interpret the discrete time and frequency parameters. Using MATLAB, we compute a discrete STFT and visualize its magnitude in form of a spectrogram representation. Then, we derive from the STFT various audio features that are useful for analyzing music signals. In particular, we develop a log-frequency spectrogram, where the frequency axis is converted into an axis corresponding to musical pitches. From this, we derive a chroma representation, which is a useful tool for capturing harmonic information of music.
Supervisors: Johannes Fischer, Alexandra Craciun
This experiment is designed to give you a brief overview of the physiology of the production of speech. Moreover, it will give a descriptive introduction to the tools of speech coding, their functionality and their strengths but also their shortcomings.
Supervisors: Soumitro Chakrabarty, Maja Taseska
t.b.a
Supervisors: Michael Schöffler, Fabian-Robert Stöter
This course intends to teach students the basics of experimental statistics as it is used for evaluating auditory experiments. Listening tests or experiments are a crucial part of assessing the quality of audio systems. There is currently no system available to give researchers and developers the possibility to evaluate the quality of audio systems fully objectively. In fact the best evaluation instrument is the human ear. Since only fair and unbiased comparisons between codecs guarantee that new developments are more preferred than the previous system, it is important to bring fundamental knowledge of statistics into the evaluation process to address the main problems of experimental tests, such as uncontrolled environments, subpar headphones or loudspeaker reproduction systems, listeners who have no experience to listening tests and so on.
Requirements are a solid mathematical background, a good understanding of fundamentals in digital signal processing, as well as a general background and personal interest in audio. Furthermore, the students are required to have experience with MATLAB. The Statistics Lab will use the R Programming language (beginners tutorial is provided in the course material)